Graph the original figure. Find the new coordinates of the vertices after the given reflection. Then graph the reflection.

HELPFUL EXAMPLE

When a figure is reflected over a line, every point of the figure has a similar point on the other side of the line that is the same distance from the line. This is also called symmetry.

Original figure vertices: $E(-4,1) ; F(-4,-2) ; G(-2,-1)$.
Find the coordinates of the vertices after a reflection over the y-axis.

$$
\begin{array}{ll}
\text { You need to place points (vertices) on the } & E(-4,1) \longrightarrow E^{\prime}(4,1) \\
\text { opposite side of the y-axis that are the same } & F(-4,-2) \longrightarrow F^{\prime}(4,-2) \\
\text { distance away from it as the original points. } & G(-2,-1) \longrightarrow G^{\prime}(2,-1)
\end{array}
$$

All the x-coordinates are multiplied by -1 and the y-coordinates stay the same. What do think happens when you reflect over the x-axis?

Now your turn.

Polygon MNPQ with vertices:
$M(-4,3) ; N(2,3) ; P(2,1) ; Q(-4,1)$
Reflected over the x-axis

4.

Polygon HIJK with vertices:
$H(-3,-4) ; I(4,-2) ; J(0,-1) ; K(-4,-3)$
Reflected over the x-axis

2.

Polygon RST with vertices:
$R(-2,4) ; S(-3,-4) ; T(-4,1)$
Reflected over the y-axis

5.

Polygon DEFG with vertices:
$D(-4,1) ; E(-2,4) ; F(-1,2) ; G(-2,-1)$
Reflected over the y-axis

Polygon $A B C$ with vertices:
$A(1,1) ; B(2,-4) ; C(4,-1)$
Reflected over the y-axis

6.

Polygon TUV with vertices:
$T(1,0) ; U(4,-2) ; V(0,-4)$
Reflected over the x-axis

