INPUT - OUTPUT TABLES

Complete each input-output table.

1. | Input | Output |
| :---: | :---: |
| 1 | 3 |
| 3 | 7 |
| 5 | 11 |
| 6 | 13 |

Rule: Multiply by 2, add 1
2.

x	y
18	7.2
22	8.8
36	14.4
50	20

Rule: Divide by 2.5
3.

x	y
1	7
2	9
4	13
6	17

Rule: Multiply by 2 , add 5

Find the rule and complete each input-output table.

BUT 1×2 = 2, NOT 5. HOW DOES 2 CHANGE TO 5 ? HOW ABOUT ADDING 3 ? SO THE RULE MIGHT BE: MULTIPLY BY 2, ADD 3. TRY THIS ON THE OTHER VALUES TO SEE IF IT IS CORRECT.
$3 \times 2=6+3=9$
$4 \times 2=8+3=11$
Rule: Multiply by 2 , add $3 \checkmark$
6.

\boldsymbol{x}	\boldsymbol{y}
$\mathbf{1}$	3
3	13
7	33
10	48

Rule: Multiply by 5 , subtract by 2
7. William is paid 50% more money than Harold, and receives an additional $\$ 2,500$ sales bonus at the end of every year. Below is an input-output table showing the total amount each person made over the past 7 years. Complete the table by filling in the empty spaces.

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7

Input	Harold's wages	$\$ 25,000$	$\$ 28,000$	$\$ 31,000$	$\$ 35,000$	$\$ 38,000$	$\$ 39,000$	$\$ 42,000$
Output	William's wages	$\$ 40,000$	$\$ 44,500$	$\$ 49,000$	$\$ 55,000$	$\$ 59,500$	$\$ 61,000$	$\$ 65,500$

