I. Write a linear equation from the given two points
Exercise 1
Point $(-2,-4) \&$ Point $(2,-2)$
Step 1 Find the slope

$$
\begin{aligned}
& \text { Slope, } m=\frac{\text { rise }}{\text { run }}=\frac{y 2-y 1}{x 2-x 1} \\
& =\frac{-2-(-4)}{2-(-2)}=\frac{-2+4}{2+2}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Step 2 Substitute one of the points and slope into the $y=m x+b$

$$
\begin{aligned}
m & =\frac{1}{2} \quad \text { Point (2,-2) } \\
-2 & =\frac{1}{2}(2)+b \\
-2 & =1+b \\
b & =-3 \\
y & =\frac{1}{2} x-3
\end{aligned}
$$

## III. Write a Equation from Description

## Exercise 3

The rent charged for space in an office building is a relationship related to the size of the space rented.
Monthly Rates:
600 square feet for $\$ 750$
900 square feet for $\$ 1150$
Step 1 Identify ordered pairs from the problem
The Points are (50, 50 and $(\mathbf{7 0}, 15)$
Step 2 Find the slope

$$
\begin{aligned}
& \text { Slope, } m=\frac{y 2-y 1}{x 2-x 1} \\
& =\frac{15-50}{70-50}=\frac{-35}{20}=\frac{-7}{4}
\end{aligned}
$$

Step 3 Substitute one of the points and slope into the $y=m x+b$ $m=\frac{-7}{4}$ Point $(50,50)$
$\begin{aligned} 50=\frac{-7}{4}(50)+b \quad 50 & =87.5+b \\ b & =-37.5\end{aligned}$
$y=\frac{-7}{2} x-37.5$
II. Write a linear equation from the graph
Exercise 2
Step 1 Find the points
The Points are ( 0 , $-2) \&(3,2)$
Step 2 Find the slope


Slope, $m=\frac{y 2-y 1}{x 2-x 1}$
$=\frac{2-(-2)}{2-(0)}=\frac{2+4}{2}=\frac{6}{2}=3$
Step 3 Substitute one of the points and slope into the $y=m x+b$

$$
\begin{gathered}
m=3 \quad \text { Point }(3,2) \\
2=3(3)+b \\
2=9+b \\
b=-7 \\
y=3 \times-7
\end{gathered}
$$

IV. Write a equation from the given two points by using Point slope form.

## Exercise 4

Point $(-7,4) \&$ Point $(1,-3)$
Step 1 Find the slope

$$
\begin{aligned}
& \text { Slope, } m=\frac{y 2-y 1}{x 2-x 1} \\
& =\frac{-3-4}{1-(-7)}=\frac{-7}{1+7}=\frac{-7}{8}
\end{aligned}
$$

Step 2 Choose one of the known points and label it
Let me take ( $-7,4$ )

$$
x 1, y 1
$$

Step 3 Plug the slope $m, x \mathbf{1}$, and $\boldsymbol{y} \mathbf{1}$ in to the Point-Slope Form

$$
\begin{aligned}
y-y & =m(x-x \\
y-4 & =\frac{-7}{8} x-(-7) \\
y & =\frac{-7}{8} x+7+4 \\
y & =\frac{-7}{8} x+11
\end{aligned}
$$

