SQUARES AND SQUARE ROOT WORKSHEET FOR CLASS 8

ANSWERS:

1. Perfect square numbers between 60 and $70=64$
2. (i) $5^{2}=$ Sum of first 5 odd numbers $=1+3+5+7+9$
(ii) $8^{2}=$ Sum of first 8 odd numbers $=1+3+5+7+9+11+13+15$
3. (i) $11 \times 13=(12-1)(12+1)=12^{2}-1=144-1=143$
(ii) $25 \times 27=(26-1)(26+1)=26^{2}-1=676-1=675$
4. (i) $34^{2}-33^{2}=34+33=67$
(ii) $89^{2}-88^{2}=89+88=177$
5. Only $9^{2}, 141^{2}$ and 21^{2} end with digit 1 .
6. (i) $13^{2}=169=84+85$
($84=\frac{13^{2}-1}{2}$ and $85=\frac{13^{2}+1}{2}$)
(ii) $17^{2}=289=144+145$
(144 = $\frac{17^{2}-1}{2}$ and $145=\frac{17^{2}+1}{2}$
7. (i) $\left\{\frac{-2}{9}\right\}^{2}=\left\{\frac{-2}{9}\right\}\left\{\frac{-2}{9}\right\}=\frac{4}{81}$
(ii) $\left\{\begin{array}{c}-5 \\ 7\end{array}\right\}^{2}=\left\{\frac{-5}{7}\right\}\left\{\begin{array}{c}-5 \\ 7\end{array}\right\}=\frac{25}{49}$
8. $2 m, m^{2}-1$ and $m^{2}+1$ represent the Pythagorean triple Let $2 m=4 \Rightarrow m=2$ $m^{2}-1=2^{2}-1=4-1=3$ and $m^{2}+1=2^{2}+1=4+1=5$ Hence $(4,6,8)$ is a not a Pythagorean triplet.
9. (i) $14^{2}-13^{2}=14+13=27$
(ii) $29^{2}-28^{2}=29+28=57$
10. (i) $37=2 \times 18+1=19^{2}-18^{2}=37$
(ii) $81=2 \times 40+1=41^{2}-40^{2}=81$
(iii) $121=2 \times 60+1=61^{2}-60^{2}=121$
11. 192= $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$ We observe that 2 are grouped in pairs and 3 is left unpaired. If we multiply 192 by the factor 3 then, $192 \times 3=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$. $576=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3$, which is a perfect square.
Therefore, the required smallest number is 3 .

SQUARES AND SQUARE ROOT WORKSHEET FOR CLASS 8

ANSWERS:

1. (i) $225=5 \times 5 \times 3 \times 3$ Here, there is no number left to make a pair. 225 is a perfect square.
(ii) $992=2 \times 2 \times 2 \times 2 \times 2 \times 31$ Here, 31 is not in pair. 992 is not a perfect square.
2. (i) $(14,48,50)$ We know that $2 \mathrm{~m}, \mathrm{~m}^{2}-1$ and $\mathrm{m}^{2}+1$ make Pythagorean triplets. Put $2 \mathrm{~m}=14 \Rightarrow$ $m=7, m^{2}-1=(7)^{2}-1=49-1=48, m^{2}+1=(7)^{2}+1=49+1=50$ Hence $(14,48,50)$ is a Pythagorean triplet.
(ii) $(22.43,57)$ Put $2 m=22 \Rightarrow m=11, m^{2}-1=(11)^{2}-1=121-1=120$, $m^{2}+1=(11)^{2}+1=121+1=122$ Hence $(22,43,57)$ is not a Pythagorean triplet.
3.

(i) $121-1=120,120-3=117,117-5=112,112-7=105,105-9=96,96-11=85,85-13=72$, $72-15=57,57-17=40,40-19=21,21-21=0$ We have subtracted odd numbers 11 times to get $0 . \quad \sqrt{ } 121=11$
(ii) 36 we have subracted odd numbers 6 times to get $0 \sqrt{ } 36=6$
(iii) 196 we have subracted odd numbers 14 times to get $0 \sqrt{ } 196=14$
4. LCM of $2,4,8$ is the least number divisible by each of them. LCM of 2,4 and $8=8$, $8=2 \times 2 \times 2$ To make it perfect square multiply 8 by the product of unpaired numbers, i.e., 2 Required number $=8 \times 2=16$
5.
(i) $\sqrt{ } 1036.84=32.2$
(ii) $\sqrt{ } 10080.16=100.4$
6. We know that $\sqrt{ }(\mathrm{ab})=\sqrt{ } \mathrm{a} \times \sqrt{ } \mathrm{b} \quad \sqrt{ } 400=\sqrt{ }(4 \times 100)=\sqrt{ } 4 \times \sqrt{ } 100=2 \times 10=20$
$\sqrt{ } 0.04=\sqrt{ }(0.2 \times 0.2)=0.2, \sqrt{ } 0.000004=\sqrt{ }(0.002 \times 0.002)=0.002$
$\sqrt{ } 400+\sqrt{ } 0.04+\sqrt{ } 0.000004=20+0.2+0.002=20.202$
7. (i) $196=\underline{2 \times 2 \times 7 \times 7 \Rightarrow \sqrt{196}=2 \times 7=14}$
(ii) $1024=\underline{2 \times 2} \times \underline{2 \times 2} \times \underline{2 \times 2 \times 2 \times 2 \times 2 \Rightarrow \sqrt{2} 1024=2 \times 2 \times 2 \times 2 \times 2=32}$
(iii) $2916=\underline{3 \times 3} \times \underline{2 \times 2} \times \underline{9 \times 9} \Rightarrow \sqrt{ } 2916=3 \times 2 \times 9=54$
(iv) $1764=3 \times 3 \times 2 \times 2 \times 7 \times 7 \Rightarrow \sqrt{ } 1764=3 \times 2 \times 7=42$
8. First, we find the square root of 4229 by division method. Here, we get a remainder 4. Required perfect square number $=4229-4=4225$ and $\sqrt{ } 4225=65$
9. The squares of all natural between 70 and 80 are as follows:

$$
\begin{array}{cc}
71^{2}=5041, & 72^{2}=5184,73^{2}=5329 \\
74^{2}=5476 & 75^{2}=5625 \quad 76^{2}=5776 \\
77^{2}=5929 & 78^{2}=6084 \quad 79^{2}=6241
\end{array}
$$

10. $\begin{array}{llll}\text { a) } 9.1 & \text { b) } 8.3 & \text { c) } 2.8 & \text { d) } 0.5\end{array}$

SQUARES AND SQUARE ROOT WORKSHEET FOR CLASS 8

ANSWERS

1. The amount paid by each student $=$ The total number of students in the school. $1225=5 \times 5 \times 7 \times 7$ Therefore
The amount paid by each student $=$ (the total number of students in the school) $=35$
2. 100,10000 is a perfect square because the number of zeros in the end is even. 230330 and 21543200000 are not perfect squares because the number of zeros in the end is odd.
3. $3844=2 \times 2 \times 31 \times 31 \quad \sqrt{ } 3844=\sqrt{2 \times 2 \times 31 \times 31}=2 \times 31=62$

62 rows are there in auditorium.
4. We know that the three natural numbers m, n, p are said to be Pythagorean triplets
if $\mathrm{m}^{2}+\mathrm{n}^{2}=\mathrm{p}^{2}$.
(i) $2^{2}+3^{2}=4+9=13$ not equal to 16 .
(ii) $5^{2}+4^{2}=25+16=41$ not equal to 49
(iii) $3^{2}+4^{2}=9+16=25$ equal to $5^{2}=25$

Therefore $(3,4,5)$ are Pythagorean triplets
5. (i) $9408=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7$ Here, 2 and 7 occur in pairs. But 3 doesn't have a pair. Therefore 3 is the smallest number by which 9408 must be divided. so it becomes a perfect square. perfect square $=9408 / 3=3136$

Square root $=56$
6. $a=4$
7. The length of the diagonal is $=\sqrt{15^{2}+20^{2}}$

$$
=\sqrt{ } 625=25 \mathrm{~m}
$$

8.

10	44100
10	4410
21	441
	21

9. If $\sqrt{ } \mathrm{n}=15, \mathrm{n}=15 \times 15=225$
$3 n+5=3(225)+5=680$
10. $\frac{576}{3025}=\frac{24}{55}$
$\begin{array}{llll}11 . & 48 & 12 . & 7\end{array}$
11. breaking it into parts $(102)^{2}=(100+2)^{2}$ using the identity $(a+b)^{2}=a^{2}+b^{2}+2 a b$ $(100+2)^{2}=100^{2}+2^{2}+2 \times 100 \times 2$ $=10404$
