Answers:

SQUARE ROOT

a) 625 : Find the prime factors for 625.

$625=5 \times 5 \times 5 \times 5$ by grouping we get pairs $(5 \times 5) \times(5 \times 5)$.none of the prime factors are left out. Therefore 625 is a perfect square.
a, b, e are perfect squares.
c, d are not a perfect squares.
2. $10 \sqrt{ } 10$
3. a) 2904 find the prime factors for 2904 . $2904=2 \times 2 \times 11 \times 11 \times 2 \times 3$ by grouping 2 and 3 are left out. so divide by 6 to eliminate 2 and 3 we get, $2904 / 6=(2 \times 2) \times(11 \times 11)=484=22^{2}$
(b) $600=2 \times 2 \times 2 \times 3 \times 5 \times 5,2$ and 3 are left out. so divide by 6 . so $100=10^{2}$
(c) $3645=(3 \times 3) \times(3 \times 3) \times(3 \times 3) \times 5$, 5 is leftout.so divide by 5 . so $729=27^{2}$
(d) $1800=10 \times 10 \times 2 \times 3 \times 3,2$ is leftout. so divide by 2 . so $900=30^{2}$
4. 10
5. $\sqrt{1600}=40$
6. 15
7. a) 7688 find the prime factors for $7688.7688=2 \times 2 \times 31 \times 31 \times 2$ by grouping 2 is left out. so multiple by 2 we get, $7688 \times 2=2 \times 2 \times 31 \times 31 \times 2 \times 2$) $=124^{2}$
b) $675=5 \times 5 \times 3 \times 3 \times 3,3$ is left out so multiple by $3=2025=45^{2}$
(c) $1008=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7,7$ is left out ,multiple by $7=7056=84^{2}$
(d) $1875=5 \times 5 \times 5 \times 5 \times 3,3$ is left out so multiple by $3=5625=75^{2}$
$12,32,41,50,78$ It is not a perfect square $16,25,36,64,81$ is a perfect square
9.

15 units
10. 10
11. (a) 441 prime factors are $(7 \times 7) \times(3 \times 3) .441$ has equal pairs of factors. so it is a perfect square.
(b) 186 prime factors are (6×31). It does not have a equal pairs of factors. so It is not a perfect square.
(c) 343 prime factors are $(7 \times 7) \times 7$. It does not have a equal pairs of factors. solt is not a perfect square.
(d) 2916 prime factors are $(3 \times 3) \times(3 \times 3) \times(3 \times 3) \times(2 \times 2) .2916$ has equal pairs of factors. so It is a perfect square
12. 17
13. 600
14. 22

Answers:

2. $a=\sqrt{ } 234.09=15.3$

Perimeter=4a=61.2m
3. n^{2}
4. 1
5. 8
6. $\sqrt{ } 176+\sqrt{ } 2401=\sqrt{ } 176+49=\sqrt{ } 225=15$
7. Let us find the square root of 2361 using Long division method

48	
	2361
	16
88	761
	704
	57

So remainder is 57 Therefore $48^{2}<2361$ Now if we subtract the remainder from main number, it will be perfect square So subtraction of 57 from 2361 will make it perfect square. $2304=48^{2}$
8. Let us find the square root of 4529 using Long division method

67	
	4529 36
127	929 889

So remainder is 40 Therfore $67^{2}<4529$
Next perfect square would be $68^{2}=4624$ hence the number to be added $=4624-4529=95$ So addition of 95 to 4529 will make it perfect square
9. Here we need to find the square root of the Number 1444 $2025=3 \times 3 \times 3 \times 3 \times 5 \times 5, \sqrt{ } 2025=3 \times 3 \times 5=45$
So There are 45 students and each contributed has Rs 45
10. Here we need to find the square root of the Number 625

$$
625=5 \times 5 \times 5 \times 5 \quad \sqrt{ } 625=5 \times 5=25
$$

So There are 25 rows and each rows has 25 adults
11. $2 \mathrm{~m}, \mathrm{~m}^{2+1}$
12. 2025
13. $\sqrt{ } 45$
14. $12 \sqrt{ } 10$
15. 03

ANSWERS

2. 0.03
3.

36
4.

9	
	99
	81
	18

We know that the two digit greatest number is 99
\therefore Greatest two digit perfect square number is $99-18=81$
5.

10	
10	100
	100
	0

We know that the three digit greatest number is 100
To find the square root of 100
\therefore the least number of three digits which is a perfect square is 100 itself.
6. The numbers ending with 2,37 or 8 is not a perfect square.
7. a) 42 unit digit of $(42)^{2}=(2)^{2}=4$
(b) 967 unit digit of $(967)^{2}=(7)^{2}=49=9$
(c) 4563 unit digit of $(4563)^{2}=(3)^{2}=9$
(d) 3156 unit digit of $(3156)^{2}=(6)^{2}=36=6$
8. Let us consider two numbers a\& 16a a $a \times 16 a=2116$ $16 a^{2}=1296 \quad a^{2}=1296 / 16 a^{2}=81 a=9,16 a=144$
Thus, the two numbers are 9 and 144
9.

By prime factorisation $256=\sqrt{ } 2 \times 2=\sqrt{ } 2 \times 2$ $=2 \times 2 \times 2 \times 2$ (Taking one prime number from each pair)

So, $\sqrt{ } 256=16$.

$$
\begin{aligned}
\sqrt{ }(196 / 44)=\sqrt{ } 196 / \sqrt{ } 144= & \sqrt{ }(2 \times 2 \times 7 \times 7) / \sqrt{ }(2 \times 2 \times 2 \times 2 \times 3 \times 3) \\
= & (2 \times 7)(2 \times 2 \times 3) \\
& =14 / 12=7 / 6
\end{aligned}
$$

First convert the decimal number 2.89 to fraction. $2.89=289 / 100$

$$
\sqrt{ }(289 / 00)=\sqrt{ } 289 / \sqrt{ } 100=\sqrt{ } 17 \times 17 / \sqrt{ } 10 \times 10
$$

$=17 / 10=1.7$ Hence square root of $2.89=1.7$
12.
13. $2,3,7$ or 8
14. 99,856
15. 79^{2}

